Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 31 2024 14:26:04
%S 1,3,5,8,10,13,15,17,20,22,25,27,29,32,34,37,39,41,44,46,49,51,54,56,
%T 58,61,63,66,68,70,73,75,78,80,82,85,87,90,92,94,97,99,102,104,107,
%U 109,111,114,116,119,121,123,126,128,131,133,135,138,140,143,145
%N Numbers m such that v^n - u^m >= u^(m+1) - v^n, where u=2, v=3, and u^m < v^n < u^(m+1).
%e The condition u^m < v^n < u^(m + 1) implies m = floor(n*log(v)/log(u)). With u=2 and v=3, for n = 1, we have m = 1 and 3 - 2 >= 4 - 3, so 1 is in this sequence. For n = 2, we have m = 3 and 9 - 8 < 16 - 9, so 2 is in A372779.
%t z = 200; {u, v} = {2, 3};
%t m[n_] := Floor[n*Log[v]/Log[u]];
%t Table[m[n], {n, 0, z}];
%t s = Select[Range[z], v^# - u^m[#] < u^(m[#] + 1) - v^# &] (* A372779 *)
%t Complement[Range[Max[s]], s] (* this sequence *)
%Y Cf. A000079, A000244, A056576, A372779 (complement).
%K nonn
%O 1,2
%A _Clark Kimberling_, May 18 2024