login
A372775
Decimal expansion of Sum_{k>=0} (2*k + 1)!/(3*k)!.
1
2, 1, 8, 1, 3, 4, 4, 6, 5, 5, 1, 3, 4, 5, 9, 8, 3, 3, 9, 3, 8, 9, 1, 4, 8, 4, 5, 6, 6, 7, 3, 9, 9, 1, 3, 2, 4, 6, 6, 5, 0, 8, 6, 8, 8, 5, 1, 6, 6, 7, 5, 1, 0, 9, 4, 3, 6, 8, 3, 8, 5, 3, 0, 3, 1, 7, 0, 1, 0, 8, 7, 1, 5, 3, 6, 8, 6, 8, 1, 4, 5, 0, 3, 3, 8, 8
OFFSET
1,1
FORMULA
Equals hypergeometric([1, 3/2], [1/3, 2/3], 4/27).
EXAMPLE
2.181344655134598339389148456673991324665...
MATHEMATICA
s = Sum[ (2 k + 1)!/(3 k)!, {k, 0, Infinity}]
d = N[s, 100]
First[RealDigits[d]]
N[HypergeometricPFQ[{1, 3/2}, {1/3, 2/3}, 4/27], 100]
PROG
(PARI) suminf(k=0, (2*k + 1)!/(3*k)!) \\ Michel Marcus, Jun 01 2024
CROSSREFS
Cf. A372776.
Sequence in context: A341406 A342937 A353571 * A254027 A284346 A318651
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, May 31 2024
STATUS
approved