login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If the n-th 3-smooth number, A003586(n), equals 2^i * 3^j for some i, j >= 0, then the a(n)-th 3-smooth number, A003586(a(n)), equals 2^j * 3^i.
1

%I #11 May 12 2024 15:35:49

%S 1,3,2,7,5,12,4,10,19,8,16,6,27,14,24,11,37,21,9,33,18,49,30,15,44,26,

%T 13,62,40,23,57,36,20,77,52,32,17,71,47,29,93,66,43,25,87,60,39,111,

%U 22,81,55,35,104,75,51,131,31,98,69,46,123,28,91,64,152,42

%N If the n-th 3-smooth number, A003586(n), equals 2^i * 3^j for some i, j >= 0, then the a(n)-th 3-smooth number, A003586(a(n)), equals 2^j * 3^i.

%C This sequence is a self-inverse permutation of the positive integers with infinitely many fixed points (A202821).

%H Rémy Sigrist, <a href="/A372744/b372744.txt">Table of n, a(n) for n = 1..10000</a>

%H Rémy Sigrist, <a href="/A372744/a372744.gp.txt">PARI program</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F A022328(a(n)) = A022329(n).

%F A022329(a(n)) = A022328(n).

%F a(n) = n iff n belongs to A202821.

%F sign(a(n) - n) = sign(A022328(n) - A022329(n)).

%e A003586(8) = 12 = 2^2 * 3^1, A003586(10) = 18 = 2^1 * 3^2, so a(8) = 10 and.

%o (PARI) \\ See Links section.

%Y Cf. A003586, A022328, A022329, A202821 (fixed points).

%K nonn

%O 1,2

%A _Rémy Sigrist_, May 12 2024