%I #70 May 27 2024 16:04:32
%S 6,12,32,72,152,311,625,1225,2378,4566,8700,16475,31052,58290,109079,
%T 203584,379144,704821,1308268,2425259,4491074,8308879,15360082,
%U 28376089,52391492,96683649,178344205,328854566,606190627,1117103729,2058129088,3791056189
%N Number of compositions of n such that the set of parts is {1,2,3}.
%H Alois P. Heinz, <a href="/A372702/b372702.txt">Table of n, a(n) for n = 6..3779</a>
%F G.f.: C({1,2,3},x) = (x^6/(-x^3 - x^2 - x + 1)) *
%F (1/((1 - x)*(-x^2 - x + 1)) +
%F 1/((1 - x)*(-x^3 - x + 1)) +
%F 1/((1 - x^2)*(-x^2 - x + 1)) +
%F 1/((1 - x^2)*(-x^3 - x^2 + 1)) +
%F 1/((1 - x^3)*(-x^3 - x + 1)) +
%F 1/((1 - x^3)*(-x^3 - x^2 + 1))).
%F Where C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)).
%p b:= proc(n, t) option remember; `if`(n=0, `if`(t=7, 1, 0),
%p add(b(n-j, Bits[Or](t, 2^(j-1))), j=1..min(n, 3)))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=6..42); # _Alois P. Heinz_, May 25 2024
%o (PARI)
%o C_x(s,N)={my(x='x+O('x^N), g=if(#s <1,1, sum(i=1,#s, C_x(setminus(s,[s[i]]),N) * x^(s[i]) )/(1-sum(i=1,#s, x^(s[i]))))); return(g)}
%o B_x(n) ={my(h=C_x([1,2,3],n)); Vec(h)}
%o B_x(40)
%Y Cf. A048793, A107429, A245738.
%Y Column k=3 of A373118.
%K nonn,easy
%O 6,1
%A _John Tyler Rascoe_, May 25 2024