%I #9 May 12 2024 11:25:05
%S 0,2,1,3,20,4,15,12,5,7,13,8,29,6,10,21,16,36,9,19,63,11,18,17,28,33,
%T 14,26,59,22,54,56,57,101,23,34,25,27,96,46,53,88,24,44,51,42,211,38,
%U 49,93,92,180,47,91,207,30,37,64,50,62,43,60,80,31,41,85,76
%N Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the Fibonacci numbers that appear in the Zeckendorf representation of n do not appear in the dual Zeckendorf representation of a(n).
%C The dual Zeckendorf representation is also known as the lazy Fibonacci representation (see A356771 for further details).
%C This sequence is a permutation of the nonnegative integers with inverse A372660.
%H Rémy Sigrist, <a href="/A372659/b372659.txt">Table of n, a(n) for n = 0..10000</a>
%H Rémy Sigrist, <a href="/A372659/a372659.gp.txt">PARI program</a>
%H <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e The first terms, alongside the Zeckendorf representation of n and the dual Zeckendorf representation of a(n), in binary, are:
%e n a(n) z(n) d(a(n))
%e -- ---- ------ --------
%e 0 0 0 0
%e 1 2 1 10
%e 2 1 10 1
%e 3 3 100 10
%e 4 20 101 101010
%e 5 4 1000 101
%e 6 15 1001 110110
%e 7 12 1010 10101
%e 8 5 10000 111
%e 9 7 10001 1110
%e 10 13 10010 101101
%e 11 8 10100 1011
%e 12 29 10101 10101010
%o (PARI) \\ See Links section.
%Y See A372657 for a similar sequence.
%Y Cf. A356771, A372660 (inverse).
%K nonn,base
%O 0,2
%A _Rémy Sigrist_, May 09 2024