login
Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the Fibonacci numbers that appear in the Zeckendorf representation of n do not appear in the dual Zeckendorf representation of a(n).
3

%I #9 May 12 2024 11:25:05

%S 0,2,1,3,20,4,15,12,5,7,13,8,29,6,10,21,16,36,9,19,63,11,18,17,28,33,

%T 14,26,59,22,54,56,57,101,23,34,25,27,96,46,53,88,24,44,51,42,211,38,

%U 49,93,92,180,47,91,207,30,37,64,50,62,43,60,80,31,41,85,76

%N Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the Fibonacci numbers that appear in the Zeckendorf representation of n do not appear in the dual Zeckendorf representation of a(n).

%C The dual Zeckendorf representation is also known as the lazy Fibonacci representation (see A356771 for further details).

%C This sequence is a permutation of the nonnegative integers with inverse A372660.

%H Rémy Sigrist, <a href="/A372659/b372659.txt">Table of n, a(n) for n = 0..10000</a>

%H Rémy Sigrist, <a href="/A372659/a372659.gp.txt">PARI program</a>

%H <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%e The first terms, alongside the Zeckendorf representation of n and the dual Zeckendorf representation of a(n), in binary, are:

%e n a(n) z(n) d(a(n))

%e -- ---- ------ --------

%e 0 0 0 0

%e 1 2 1 10

%e 2 1 10 1

%e 3 3 100 10

%e 4 20 101 101010

%e 5 4 1000 101

%e 6 15 1001 110110

%e 7 12 1010 10101

%e 8 5 10000 111

%e 9 7 10001 1110

%e 10 13 10010 101101

%e 11 8 10100 1011

%e 12 29 10101 10101010

%o (PARI) \\ See Links section.

%Y See A372657 for a similar sequence.

%Y Cf. A356771, A372660 (inverse).

%K nonn,base

%O 0,2

%A _Rémy Sigrist_, May 09 2024