login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of defective (binary) heaps on n elements from the set {0,1} where exactly n ancestor-successor pairs do not have the correct order.
2

%I #14 May 09 2024 15:55:53

%S 1,0,0,0,0,1,2,2,9,11,36,71,151,306,591,1228,2469,4966,10025,19591,

%T 38946,75977,148585,291027,579981,1152385,2280696,4470814,8817933,

%U 17244969,33819425,65976444,129933731,254791662,499516984,977417823,1914394157,3745482924

%N Number of defective (binary) heaps on n elements from the set {0,1} where exactly n ancestor-successor pairs do not have the correct order.

%H Alois P. Heinz, <a href="/A372641/b372641.txt">Table of n, a(n) for n = 0..2000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Heap.html">Heap</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a>

%F a(n) = A372640(n,n).

%e a(5) = 1: 00111.

%e a(6) = 2: 000111, 001111.

%e a(7) = 2: 0011111, 0101111.

%e a(8) = 9: 00010111, 00011011, 00011101, 00011110, 00101111, 00111011, 00111101, 01001111, 01011111.

%e a(9) = 11: 000011101, 000011110, 001001111, 001010011, 001101111, 001110011, 001111101, 001111110, 010001111, 010111111, 011011111.

%e (The examples use max-heaps.)

%p b:= proc(n, t) option remember; `if`(n=0, 1, (g-> (f->

%p expand(b(f, t)*b(n-1-f, t)*x^t+b(f, t+1)*b(n-1-f, t+1)

%p ))(min(g-1, n-g/2)))(2^ilog2(n)))

%p end:

%p a:= n-> coeff(b(n, 0),x,n):

%p seq(a(n), n=0..37);

%t b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function [f,

%t Expand[b[f, t]*b[n-1-f, t]*x^t + b[f, t+1]*b[n-1-f, t+1]]][

%t Min[g-1, n-g/2]]][2^(Length@IntegerDigits[n, 2]-1)]];

%t a[n_] := Coefficient[b[n, 0], x, n];

%t Table[a[n], {n, 0, 37}] (* _Jean-François Alcover_, May 09 2024, after _Alois P. Heinz_ *)

%Y Main diagonal of A372640.

%K nonn

%O 0,7

%A _Alois P. Heinz_, May 08 2024