Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #24 May 11 2024 13:00:09
%S 1,3,6,11,20,60,78,157,314,624,1245,3736,4982,9962,19920,39844,79688,
%T 239046,318725,956194,1912371,2549834,5099650,15298984,20398664,
%U 40797327,81594626,163189197,326378284,979135127,1305513583,2611027094,5222054081,10444108051
%N Least k such that the k-th squarefree number has exactly n ones in its binary expansion.
%H Chai Wah Wu, <a href="/A372541/b372541.txt">Table of n, a(n) for n = 0..56</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamming_weight">Hamming weight</a>.
%e The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
%e 1: 1 ~ {1}
%e 3: 11 ~ {1,2}
%e 7: 111 ~ {1,2,3}
%e 15: 1111 ~ {1,2,3,4}
%e 31: 11111 ~ {1,2,3,4,5}
%e 95: 1011111 ~ {1,2,3,4,5,7}
%e 127: 1111111 ~ {1,2,3,4,5,6,7}
%e 255: 11111111 ~ {1,2,3,4,5,6,7,8}
%e 511: 111111111 ~ {1,2,3,4,5,6,7,8,9}
%e 1023: 1111111111 ~ {1,2,3,4,5,6,7,8,9,10}
%e 2047: 11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11}
%e 6143: 1011111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,13}
%e 8191: 1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13}
%e 16383: 11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
%e 32767: 111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
%e 65535: 1111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
%e 131071: 11111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}
%t nn=10000;
%t spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
%t dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,1];
%t Table[Position[dcs,i][[1,1]],{i,spnm[dcs-1]}]
%o (Python)
%o from math import isqrt
%o from itertools import count
%o from sympy import factorint, mobius
%o from sympy.utilities.iterables import multiset_permutations
%o def A372541(n):
%o if n==0: return 1
%o for l in count(n):
%o m = 1<<l
%o for d in multiset_permutations('0'*(l-n)+'1'*n):
%o k = m+int('0'+''.join(d),2)
%o if max(factorint(k).values(),default=0)==1:
%o return sum(mobius(a)*(k//a**2) for a in range(1, isqrt(k)+1)) # _Chai Wah Wu_, May 10 2024
%Y Positions of firsts appearances in A372433.
%Y Counting zeros instead of ones gives A372473, firsts in A372472.
%Y For prime instead of squarefree we have A372517, firsts of A014499.
%Y Counting bits (length) gives A372540, firsts of A372475, runs A077643.
%Y A000120 counts ones in binary expansion (binary weight), zeros A080791.
%Y A005117 lists squarefree numbers.
%Y A030190 gives binary expansion, reversed A030308.
%Y A048793 lists positions of ones in reversed binary expansion, sum A029931.
%Y A145037, A097110 count ones minus zeros, for primes A372516, A177796.
%Y A371571 lists positions of zeros in binary expansion, sum A359359.
%Y A371572 lists positions of ones in binary expansion, sum A230877.
%Y A372515 lists positions of zeros in reversed binary expansion, sum A359400.
%Y Cf. A023416, A049093, A049094, A069010, A070939, A071403, A211997, A280296, A372474.
%K nonn,base
%O 0,2
%A _Gus Wiseman_, May 09 2024
%E a(23)-a(33) from _Chai Wah Wu_, May 10 2024