login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=1} sqrt(k)*exp(-k/2).
0

%I #10 May 03 2024 20:47:23

%S 2,3,1,2,4,4,9,4,4,4,2,4,8,6,5,5,1,3,8,5,4,4,6,5,7,5,4,0,3,2,7,2,0,0,

%T 2,0,1,0,9,8,9,0,8,9,9,5,4,4,8,6,8,8,5,7,3,3,4,1,7,2,6,9,3,9,8,8,8,1,

%U 0,2,3,4,0,2,6,8,6,0,8,4,8,9,3,1,1,9,4,8,5,5,6

%N Decimal expansion of Sum_{k>=1} sqrt(k)*exp(-k/2).

%H Tim van de Brug, Wouter Kager, and Ronald Meester, <a href="https://research.vu.nl/ws/portalfiles/portal/282858399/MPRF23_35-66_The_Asymptotics_of_Group_Russian_Roulette.pdf">The asymptotics of group Russian roulette</a>, Markov Processes and Related Fields, Vol. 23, No. 1 (2017), pp. 35-66; <a href="https://arxiv.org/abs/1507.03805">arXiv preprint</a>, arXiv:1507.03805 [math.PR], 1 May 2017, page 10, (2.19).

%e 2.3124494442486551385446575403272002010989089954486885733417269398881...

%t RealDigits[PolyLog[-1/2, 1/Sqrt[E]], 10, 120][[1]] (* _Amiram Eldar_, May 03 2024 *)

%o (PARI) suminf(k=1,sqrt(k)*exp(-k/2))

%K nonn,cons

%O 1,1

%A _Hugo Pfoertner_, May 03 2024