login
The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).
3

%I #8 May 02 2024 10:06:43

%S 0,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,

%T 1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,

%U 1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3

%N The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).

%C All the terms are of the form 2^k-1 (A000225).

%H Amiram Eldar, <a href="/A372466/b372466.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A051903(A036537(n)).

%F a(n) = 2^A372467(n) - 1.

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(1) + Sum_{k>=2} ((2^k-1) * (d(k) - d(k-1))) / A327839 = 1.25306367526166810834..., where d(k) = Product_{p prime} (1 - 1/p + Sum_{i=1..k} (1/p^(2^i-1)-1/p^(2^i))).

%t pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q[# + 1] &], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]

%o (PARI) ispow2(n) = n >> valuation(n, 2) == 1;

%o lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(apply(x -> x + 1, e))), print1(vecmax(e), ", "))); }

%Y Cf. A000225, A036537, A051903, A327839, A372467.

%Y Similar sequences: A368710, A368711, A368712, A368713, A369933, A369935.

%K nonn,easy

%O 1,7

%A _Amiram Eldar_, May 01 2024