login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).
3

%I #8 May 02 2024 10:06:43

%S 0,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,

%T 1,1,1,3,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,

%U 1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3

%N The maximal exponent in the prime factorization of the numbers whose number of divisors is a power of 2 (A036537).

%C All the terms are of the form 2^k-1 (A000225).

%H Amiram Eldar, <a href="/A372466/b372466.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A051903(A036537(n)).

%F a(n) = 2^A372467(n) - 1.

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(1) + Sum_{k>=2} ((2^k-1) * (d(k) - d(k-1))) / A327839 = 1.25306367526166810834..., where d(k) = Product_{p prime} (1 - 1/p + Sum_{i=1..k} (1/p^(2^i-1)-1/p^(2^i))).

%t pow2Q[n_] := n == 2^IntegerExponent[n, 2]; f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, pow2Q[# + 1] &], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]

%o (PARI) ispow2(n) = n >> valuation(n, 2) == 1;

%o lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(ispow2(vecprod(apply(x -> x + 1, e))), print1(vecmax(e), ", "))); }

%Y Cf. A000225, A036537, A051903, A327839, A372467.

%Y Similar sequences: A368710, A368711, A368712, A368713, A369933, A369935.

%K nonn,easy

%O 1,7

%A _Amiram Eldar_, May 01 2024