%I #5 May 05 2024 08:55:37
%S 1,2,4,7,8,9,10,11,12,13,16,17,19,21,23,24,25,26,29,31,32,33,34,35,36,
%T 37,38,40,41,43,44,46,47,48,49,50,53,57,58,59,61,62,64,65,67,69,71,72,
%U 73,74,76,79,80,81,82,83,84,86,89,92,93,94,96,97,98,101
%N Positive integers k such that the prime indices of k are disjoint from the binary indices of k.
%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e The binary indices of 65 are {1,7}, and the prime indices are {3,6}, so 65 is in the sequence.
%e The terms together with their prime indices begin:
%e 1: {}
%e 2: {1}
%e 4: {1,1}
%e 7: {4}
%e 8: {1,1,1}
%e 9: {2,2}
%e 10: {1,3}
%e 11: {5}
%e 12: {1,1,2}
%e 13: {6}
%e 16: {1,1,1,1}
%e The terms together with their binary expansions and binary indices begin:
%e 1: 1 ~ {1}
%e 2: 10 ~ {2}
%e 4: 100 ~ {3}
%e 7: 111 ~ {1,2,3}
%e 8: 1000 ~ {4}
%e 9: 1001 ~ {1,4}
%e 10: 1010 ~ {2,4}
%e 11: 1011 ~ {1,2,4}
%e 12: 1100 ~ {3,4}
%e 13: 1101 ~ {1,3,4}
%e 16: 10000 ~ {5}
%t bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[100],Intersection[bix[#],prix[#]]=={}&]
%Y For subset instead of disjoint we have A372430.
%Y The complement is A372432.
%Y Equal lengths: A071814, zeros of A372441.
%Y Equal sums: A372427, zeros of A372428.
%Y Equal maxima: A372436, zeros of A372442.
%Y A019565 gives Heinz number of binary indices, adjoint A048675.
%Y A029837 gives greatest binary index, least A001511.
%Y A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
%Y A061395 gives greatest prime index, least A055396.
%Y A070939 gives length of binary expansion.
%Y A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
%Y Cf. A000720, A001221, A059893, A096111, A230877, A243055, A304818, A355536, A358136, A372429.
%K nonn,base
%O 1,2
%A _Gus Wiseman_, May 03 2024