Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 01 2024 13:05:39
%S 1,5,18,62,214,750,2676,9708,35718,132926,499228,1888644,7186876,
%T 27478508,105474216,406182552,1568563014,6071812638,23552366796,
%U 91525132692,356242058004,1388588519268,5419533876696,21176597444712,82834229300124,324326668721100
%N Expansion of (1 + x) / ((1 - 2*x)*sqrt(1 - 4*x)).
%C Conjecture: For p Pythagorean prime (A002144), a(p) - 5 == 0 (mod p).
%C Conjecture: For p prime of the form 4*k + 3 (A002145), a(p) + 1 == 0 (mod p).
%F a(n) = 4*A000984(n) - 3* A029759(n) = binomial(2*n,n) + 3*Sum_{k=0..n-1} 2^(n-k-1)*binomial(2*k,k).
%F a(n) = 2*a(n-1) + A028270(n) = 2*a(n-1) + binomial(2*n, n) + binomial(2*n-2, n-1) for n >= 1.
%F a(n) = - 2^(n-1)*3*i + binomial(2*n,n)*(1-3/2*hypergeom([1,n+1/2],[n + 1],2)).
%F a(n) = A082590(n-1) + A082590(n) for n >= 1.
%F a(n) = (5*A188622(n) - 2*A126966(n)) / 3.
%F D-finite with recurrence n*a(n) -5*n*a(n-1) +2*(n+5)*a(n-2) +4*(2*n-5)*a(n-3)=0. - _R. J. Mathar_, May 01 2024
%p a := n -> -2^(n-1)*3*I + binomial(2*n, n)*(1-3/2*hypergeom([1, n+1/2], [n+1], 2)):
%p seq(simplify(a(n)), n = 0 .. 25);
%o (PARI) my(x='x+O('x^40)); Vec((1 + x) / ((1 - 2*x)*sqrt(1 - 4*x))) \\ _Michel Marcus_, Apr 30 2024
%Y Cf. A002144, A002145, A000984, A028270, A029759, A082590, A126966, A188622.
%K nonn
%O 0,2
%A _Mélika Tebni_, Apr 30 2024