Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 30 2024 06:53:22
%S 1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,3,4,4,4,4,
%T 3,4,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%U 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
%N a(n) is the size of the largest set of positive integers S from 1..prime(n)-1 such that for any subset R of S, Sum {R} + prime(n) is prime.
%C This sequence is not monotonically increasing.
%e Let n=5, so p=prime(5)=11. From A070046, there are 3 positive integers x such that 1 <= x < 11 and 11+x is prime, which are {2, 6, 8}, so a(5) <= 3. Next, we see that 11 + 2 + 6 + 8 = 27 which is not prime so a(5) < 3. Last, we see that 11 + 2 + 6 = 19 is prime, and we already checked that 11 + 2 and 11 + 6 were prime, so S = {2, 6} and a(5) = 2.
%e 11 is the first n such that a(n) = 3. Here, prime(11) = 31, and there are multiple sets which work. One is S = {6, 22, 30}.
%e 31 + {} = 31 (empty set subset of S),
%e 31 + 6 = 37,
%e 31 + 22 = 53,
%e 31 + 30 = 61,
%e 31 + 6 + 22 = 59,
%e 31 + 6 + 30 = 67,
%e 31 + 22 + 30 = 83,
%e 31 + 6 + 22 + 30 = 89, all of which are prime.
%e 28 is the first n such that a(n) = 4. Here, prime(28) = 107, and there are multiple sets which work. One is S = {2, 30, 42, 90}.
%p f:= proc(n)
%p local k,p,C,S,s,t,q;
%p p:= ithprime(n);
%p C:= select(isprime,[$p+1 .. 2*p-1]) -~ p;
%p S[1]:= map(t -> [{t},{0,t}],C);
%p for k from 2 do
%p S[k]:= NULL;
%p for s in S[k-1] do
%p for t in select(`>`,C,max(s[1])) do
%p q:= s[2] +~ t;
%p if andmap(isprime, q +~ p) then
%p S[k]:= S[k], [s[1] union {t}, s[2] union q] ;
%p fi
%p od od;
%p S[k]:= {S[k]};
%p if S[k] = {} then return k-1 fi
%p od
%p end proc:
%p map(f, [$1..90]); # _Robert Israel_, May 06 2024
%t nmax = 87; a372406 = {{1, 1}};
%t For[n = 2, n <= nmax, n++, d = {}; p = Prime[n];
%t For[a = 2, a < p, a += 2, If[PrimeQ[p + a], AppendTo[d, a]]]; q = 1; k = 0;
%t While[q == 1 && k <= Length[d], k++; su = Subsets[d, {k}];
%t For[i = 1, i <= Length[su], i++, s = su[[i]];
%t If[PrimeQ[Total[s] + p], y = Subsets[s]; t = 1;
%t For[z = 1, z <= Length[y], z++,
%t If[CompositeQ[Total[y[[z]]] + p], t = 0; q = 0; Break[]]];
%t If[t == 1, q = 1; Break[]], q = 0]]];
%t AppendTo[a372406, {n, k - 1}]]
%t Print[a372406]
%Y Cf. A070046.
%K nonn
%O 1,4
%A _Samuel Harkness_, Apr 29 2024