login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A372337
Rectangular array, read by descending antidiagonals: row n shows the numbers m > 1 in whose prime factorization p(1)^e(1) * p(2)^e(2) * ... * p(k)^e(k), all e(i) are <= 2 and the number of 0's in the multiset {e(i)} is n-1.
0
2, 4, 3, 6, 9, 5, 12, 10, 14, 7, 18, 15, 21, 22, 11, 30, 20, 25, 33, 26, 13, 36, 42, 28, 44, 39, 34, 17, 60, 45, 35, 49, 52, 51, 38, 19, 90, 50, 63, 55, 65, 68, 57, 46, 23, 150, 70, 66, 77, 91, 85, 76, 69, 58, 29, 180, 75, 98, 78, 102, 114, 95, 92, 87, 62
OFFSET
1,1
EXAMPLE
28 = 2^2 * 3^0 * 5^0 * 7^1, so {e(i)} is {0,0,1,2}, so 28 is in row 3.
Corner:
2 4 6 12 18 30 36 60
3 9 10 15 20 42 45 50
5 14 21 25 28 35 63 66
7 22 33 44 49 55 77 78
11 26 39 52 65 91 102 117
13 34 51 68 85 114 119 153
17 38 57 76 95 133 138 171
19 46 69 92 115 161 174 207
23 58 87 116 145 186 203 261
MATHEMATICA
exps := Map[#[[2]] &, Sort[Join[#, Complement[Map[{Prime[#], 0} &, Range[PrimePi[Last[#][[1]]]]], Map[{#[[1]], 0} &, #]]]] &[FactorInteger[#]]] &;
m = Map[Transpose[#][[1]] &, GatherBy[Map[{#[[1]], Count[#[[2]], 0]} &,
Select[Map[{#, exps[#]} &, Range[2, 7000]], Max[#[[2]]] <= 2 &]], #[[2]] &]];
z = 12; r = Table[Take[m[[n]], z], {n, 1, z}]
Grid[r] (* array *)
w[n_, k_] := r[[n]][[k]]
Table[w[n - k + 1, k], {n, z}, {k, n, 1, -1}] // Flatten (* sequence *)
(* Peter J. C. Moses, Mar 21 2024 *)
CROSSREFS
Cf. A000040 (the primes, column 1), A371799.
Sequence in context: A363473 A361748 A377093 * A371236 A246366 A271865
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 28 2024
STATUS
approved