%I #8 Apr 30 2024 02:26:23
%S 8,6,1,1,3,6,3,1,1,5,9,4,0,5,2,5,7,5,2,2,3,9,4,6,4,8,8,8,9,2,8,0,9,5,
%T 0,5,0,9,5,7,2,5,3,7,9,6,2,9,7,1,7,6,3,7,6,1,5,7,2,1,9,2,0,9,0,6,5,2,
%U 9,4,7,1,4,9,5,0,4,8,8,6,5,7,0,4,1,6,2
%N Decimal expansion of the largest positive zero of the Legendre polynomial of degree 4.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre_polynomials">Legendre polynomials</a>.
%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F Largest positive root of 35*x^4 - 30*x^2 + 3 = 0.
%F Equals sqrt((3+2*sqrt(6/5))/7).
%e 0.861136311594052575223946488892809505095725379629717637615721...
%Y Cf. A008316, A100258.
%Y There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
%Y k | zeros
%Y ---+--------------------------
%Y 2 | A020760
%Y 3 | A010513/10
%Y 4 | A372267, A372268
%Y 5 | A372269, A372270
%Y 6 | A372271, A372272, A372273
%Y 7 | A372274, A372275, A372276
%K nonn,cons
%O 0,1
%A _Pontus von Brömssen_, Apr 25 2024