login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the largest prime factor of n^n - n.
6

%I #17 Oct 29 2024 03:28:53

%S 2,3,7,13,311,43,337,193,333667,13421,266981089,28393,29914249171,

%T 10678711,1321,184417,7563707819165039903,236377,192696104561,

%U 920421641,12271836836138419,39700406579747,58769065453824529,152587500001,4315817869647001,797161

%N a(n) is the largest prime factor of n^n - n.

%H Amiram Eldar, <a href="/A372229/b372229.txt">Table of n, a(n) for n = 2..115</a>

%F a(n) = A006530(A061190(n)).

%p pf := n -> NumberTheory:-PrimeFactors(n): a := n -> max(pf(n^n - n));

%p seq(a(n), n = 2..27); # _Peter Luschny_, Apr 27 2024

%t Table[f = FactorInteger[n^n-n]; f[[Length[f]]][[1]], {n,2,25}] (* _Vaclav Kotesovec_, Apr 26 2024 *)

%o (Python)

%o from sympy import primefactors

%o def A372229(n): return max(max(primefactors(n),default=1),max(primefactors(n**(n-1)-1),default=1)) # _Chai Wah Wu_, Apr 27 2024

%Y Cf. A061190, A006530, A006486, A007571, A372228.

%K nonn

%O 2,1

%A _Tyler Busby_, Apr 23 2024