Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 01 2024 00:10:15
%S 0,0,0,1,19,317,5582,108244,2331108,55636986,1463717784,42182876763,
%T 1323539651164,44955519539963,1644461582317560,64481138409909506,
%U 2698923588248208224,120133276796015812548,5667351458582453925696,282496750694780020437765,14837506263979393796687088
%N Number of labeled simple graphs on n vertices with a unique cycle of length > 2.
%C An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.
%H Andrew Howroyd, <a href="/A372193/b372193.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.: B(x)*C(x) where B(x) is the e.g.f. of A057500 and C(x) is the e.g.f. of A001858. - _Andrew Howroyd_, Jul 31 2024
%e The a(4) = 19 graphs:
%e 12,13,23
%e 12,14,24
%e 13,14,34
%e 23,24,34
%e 12,13,14,23
%e 12,13,14,24
%e 12,13,14,34
%e 12,13,23,24
%e 12,13,23,34
%e 12,13,24,34
%e 12,14,23,24
%e 12,14,23,34
%e 12,14,24,34
%e 12,23,24,34
%e 13,14,23,24
%e 13,14,23,34
%e 13,14,24,34
%e 13,23,24,34
%e 14,23,24,34
%t cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@y,{k}],And @@ Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&];
%t Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2&]],{n,0,5}]
%o (PARI) seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ _Andrew Howroyd_, Jul 31 2024
%Y For no cycles we have A001858 (covering A105784), unlabeled A005195 (covering A144958).
%Y Counting triangles instead of cycles gives A372172 (non-covering A372171), unlabeled A372194 (non-covering A372174).
%Y The unlabeled version is A236570, non-covering A372191.
%Y The covering case is A372195, column k = 1 of A372175.
%Y A000088 counts unlabeled graphs, labeled A006125.
%Y A002807 counts cycles in a complete graph.
%Y A006129 counts labeled graphs, unlabeled A002494.
%Y A372167 counts graphs by triangles, non-covering A372170.
%Y A372173 counts unlabeled graphs by triangles, non-covering A263340.
%Y Cf. A000272, A054548, A057500, A121251, A137916, A213434, A322661, A372169, A372176.
%K nonn
%O 0,5
%A _Gus Wiseman_, Apr 25 2024
%E a(7) onwards from _Andrew Howroyd_, Jul 31 2024