login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that 18*m + 1, 36*m + 1, 108*m + 1, and 162*m + 1 are all primes.
5

%I #9 Apr 21 2024 19:10:37

%S 1,71,155,176,241,346,420,540,690,801,1145,1421,1506,2026,2066,3080,

%T 3235,3371,3445,3511,3640,4746,4925,5681,5901,6055,6520,7931,8365,

%U 8970,9006,9556,9685,10186,11396,11750,11935,12055,12666,13205,13266,13825,13881,14606

%N Numbers m such that 18*m + 1, 36*m + 1, 108*m + 1, and 162*m + 1 are all primes.

%C If m is a term, then (18*m + 1) * (36*m + 1) * (108*m + 1) * (162*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form W_4(3*m) in Nakamula et al. (2007).

%C The corresponding Carmichael numbers are 12490201, 288503529142321, 6548129556412321, ...

%H Amiram Eldar, <a href="/A372188/b372188.txt">Table of n, a(n) for n = 1..10000</a>

%H Ken Nakamula, Hirofumi Tsumura, and Hiroaki Komai, <a href="https://arxiv.org/abs/math/0702410">New polynomials producing absolute pseudoprimes with any number of prime factors</a>, arXiv:math/0702410 [math.NT], 2007.

%e 1 is a term since 18*1 + 1 = 19, 36*1 + 1 = 37, 108*1 + 1 = 109, and 162*1 + 1 = 163 are all primes.

%e 71 is a term since 18*71 + 1 = 1279, 36*71 + 1 = 2557, 108*71 + 1 = 7669, and 162*71 + 1 = 11503 are all primes.

%t q[n_] := AllTrue[{18, 36, 108, 162}, PrimeQ[#*n + 1] &]; Select[Range[15000], q]

%o (PARI) is(n) = isprime(18*n + 1) && isprime(36*n + 1) && isprime(108*n + 1) && isprime(162*n + 1);

%Y Cf. A002997, A318646, A372190.

%Y Similar sequences: A046025, A257035, A206024, A206349, A372186, A372187.

%K nonn,easy

%O 1,2

%A _Amiram Eldar_, Apr 21 2024