Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 21 2024 19:10:06
%S 333,741,1659,1749,2505,2706,2730,4221,4437,4851,5625,6447,7791,7977,
%T 8229,8250,9216,10833,12471,13950,14028,15147,16002,17667,18207,18246,
%U 19152,20517,23400,23421,23961,25689,26247,28587,28608,30363,31584,34167,36330,36378
%N Numbers m such that 20*m + 1, 80*m + 1, 100*m + 1, and 200*m + 1 are all primes.
%C If m is a term, then (20*m + 1) * (80*m + 1) * (100*m + 1) * (200*m + 1) is a Carmichael number (A002997). These are the Carmichael numbers of the form U_{4,4}(m) in Nakamula et al. (2007).
%C The corresponding Carmichael numbers are 393575432565765601, 9648687289456956001, 242412946401534283201, ...
%H Amiram Eldar, <a href="/A372186/b372186.txt">Table of n, a(n) for n = 1..10000</a>
%H Ken Nakamula, Hirofumi Tsumura, and Hiroaki Komai, <a href="https://arxiv.org/abs/math/0702410">New polynomials producing absolute pseudoprimes with any number of prime factors</a>, arXiv:math/0702410 [math.NT], 2007.
%e 333 is a term since 20*333 + 1 = 6661, 80*333 + 1 = 26641, 100*333 + 1 = 33301, and 200*333 + 1 = 66601 are all primes.
%t q[n_] := AllTrue[{20, 80, 100, 200}, PrimeQ[# * n + 1] &]; Select[Range[40000], q]
%o (PARI) is(n) = isprime(20*n + 1) && isprime(80*n + 1) && isprime(100*n + 1) && isprime(200*n + 1);
%Y Cf. A002997, A318646, A372189.
%Y Similar sequences: A046025, A257035, A206024, A206349, A372187, A372188.
%K nonn,easy
%O 1,1
%A _Amiram Eldar_, Apr 21 2024