%I #12 Aug 01 2024 10:33:38
%S 1,0,1,3,1,19,15,0,6,0,0,0,1,155,232,15,190,0,0,70,50,0,0,0,0,30,15,0,
%T 0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
%N Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly 2k directed cycles of length > 2.
%C A directed cycle in a simple (undirected) graph is a sequence of distinct vertices, up to rotation, such that there are edges between all consecutive elements, including the last and the first.
%e Triangle begins (zeros shown as dots):
%e 1
%e .
%e 1
%e 3 1
%e 19 15 . 6 ... 1
%e 155 232 15 190 .. 70 50 .... 30 15 .......... 10 .............. 1
%e Row n = 4 counts the following graphs:
%e 12,34 12,13,14,23 . 12,13,14,23,24 . . . 12,13,14,23,24,34
%e 13,24 12,13,14,24 12,13,14,23,34
%e 14,23 12,13,14,34 12,13,14,24,34
%e 12,13,14 12,13,23,24 12,13,23,24,34
%e 12,13,24 12,13,23,34 12,14,23,24,34
%e 12,13,34 12,13,24,34 13,14,23,24,34
%e 12,14,23 12,14,23,24
%e 12,14,34 12,14,23,34
%e 12,23,24 12,14,24,34
%e 12,23,34 12,23,24,34
%e 12,24,34 13,14,23,24
%e 13,14,23 13,14,23,34
%e 13,14,24 13,14,24,34
%e 13,23,24 13,23,24,34
%e 13,23,34 14,23,24,34
%e 13,24,34
%e 14,23,24
%e 14,23,34
%e 14,24,34
%t cycles[g_]:=Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@g,{k}],Min@@#==First[#]&&And@@Table[MemberQ[Sort/@g,Sort[{#[[i]], #[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[g]}];
%t Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[cycles[#]]==2k&]], {n,0,5},{k,0,Length[cycles[Subsets[Range[n],{2}]]]/2}]
%Y Row lengths are A002807 + 1.
%Y Row sums are A006129, unlabeled A002494.
%Y Column k = 0 is A105784 (for triangles A372168, non-covering A213434), unlabeled A144958 (for triangles A372169).
%Y Counting triangles instead of cycles gives A372167 (non-covering A372170), unlabeled A372173 (non-covering A263340).
%Y The non-covering version is A372176.
%Y Column k = 1 is A372195 (non-covering A372193, for triangles A372171), unlabeled A372191 (non-covering A236570, for triangles A372174).
%Y A000088 counts unlabeled graphs, labeled A006125.
%Y A001858 counts acyclic graphs, unlabeled A005195.
%Y A322661 counts covering loop-graphs, unlabeled A322700.
%Y Cf. A000272, A053530, A121251, A137916, A137917, A372172, A372194.
%K nonn,more,tabf
%O 0,4
%A _Gus Wiseman_, Apr 24 2024