Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 25 2024 15:32:02
%S 1,14,86,374,1382,4694,15206,47894,148262,453974,1380326,4177814,
%T 12607142,37968854,114201446,343194134,1030762022,3094645334,
%U 9288654566,27875400854,83645076902,250972979414,752994435686,2259134301974
%N a(n) = A371764(n, 2).
%H Paolo Xausa, <a href="/A372148/b372148.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).
%F a(n) = 2*(4*3^n - 9*2^n + 7) - [n = 1]. - _Hugo Pfoertner_, Apr 20 2024
%F G.f.: x*(1 + 8*x + 13*x^2 + 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 3*x)). - _Stefano Spezia_, Apr 21 2024
%p a := n -> 2*(4*3^n - 9*2^n + 7) - `if`(n=1, 1, 0);
%p seq(a(n), n = 1..24); # _Peter Luschny_, Apr 20 2024
%t A372148[n_] := 2*(4*3^n - 9*2^n + 7) - Boole[n == 1]; Array[A372148,50] (* or *)
%t LinearRecurrence[{6, -11, 6}, {1, 14, 86, 374}, 50] (* _Paolo Xausa_, May 25 2024 *)
%Y Cf. A371764.
%K nonn,easy
%O 1,2
%A _Detlef Meya_, Apr 20 2024