login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372126
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*(1 + 9*x*A(x))^(1/3) ).
3
1, 1, 5, 11, 95, 150, 2688, -111, 98489, -215578, 4416842, -18887063, 230670421, -1356589436, 13381147908, -92724422022, 831047516316, -6277471705749, 53925750947589, -426682784513559, 3602138266461603, -29250145766625450, 245524688963062050
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 9^(n-k) * binomial(n+k,k) * binomial(k/3,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378555(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x*(1 + 9*x)^(1/3))^(n+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x*(1 + 9*x)^(1/3)) ). (End)
PROG
(PARI) a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k, k)*binomial(k/3, n-k))/(n+1);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 20 2024
STATUS
approved