login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372092
Numbers k where records occur for d(k)/d(k+1), where d(k) is the number of divisors of k (A000005).
2
1, 2, 4, 6, 12, 30, 36, 60, 180, 240, 420, 1008, 1320, 1800, 2160, 2520, 6300, 7560, 12600, 15120, 20160, 30240, 45360, 55440, 100800, 110880, 196560, 332640, 498960, 786240, 982800, 1108800, 1580040, 1940400, 1995840, 2402400, 3880800, 4324320, 11476080, 11531520
OFFSET
1,2
COMMENTS
This sequence is infinite (Schinzel, 1954).
Is a(n) = A103199(n) - 1?
From Michael De Vlieger, Apr 19 2024: (Start)
a(12) = 1008 = 2^4 * 3^2 * 7 is the smallest term that is not a product of primorials.
a(36) = 2402400 = 2^5 * 3^1 * 5^2 * 7 * 11 * 13 is the smallest term whose exponents are not nonincreasing as prime base increases (ignoring interposing nondivisor primes). (End)
LINKS
Michael De Vlieger, Prime power decomposition of a(n), n = 1..69.
Andrzej Schinzel, Sur une propriété du nombre de diviseurs, Publ. Math. (Debrecen), Vol. 3 (1954), pp. 261-262.
MATHEMATICA
seq[kmax_] := Module[{d1 = 1, d2, rm = 0, r, s = {}}, Do[d2 = DivisorSigma[0, k]; r = d1 / d2; If[r > rm, rm = r; AppendTo[s, k-1]]; d1 = d2, {k, 2, kmax}]; s]; seq[10^6]
PROG
(PARI) lista(kmax) = {my(d1 = 1, d2, rm = 0, r); for(k = 2, kmax, d2 = numdiv(k); r = d1 / d2; if(r > rm, rm = r; print1(k-1, ", ")); d1 = d2); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 18 2024
STATUS
approved