login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372014
T(n,k) is the total number of levels in all Motzkin paths of length n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.
5
1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 4, 6, 4, 3, 1, 8, 14, 12, 7, 4, 1, 18, 32, 33, 21, 11, 5, 1, 44, 74, 84, 64, 34, 16, 6, 1, 113, 180, 208, 181, 111, 52, 22, 7, 1, 296, 457, 520, 485, 344, 179, 76, 29, 8, 1, 782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1
OFFSET
0,7
COMMENTS
A Motzkin path of length n has n+1 nodes.
LINKS
Wikipedia, Motzkin number
FORMULA
Sum_{k=1..n+1} k * T(n,k) = A005717(n+1) = (n+1) * A001006(n).
EXAMPLE
In the A001006(3) = 4 Motzkin paths of length 3 there are 2 levels with 1 node, 2 levels with 2 nodes, 2 levels with 3 nodes, and 1 level with 4 nodes.
2 _ 1 1
2 / \ 3 /\_ 3 _/\ 4 ___ .
So row 3 is [2, 2, 2, 1].
Triangle T(n,k) begins:
1;
0, 1;
1, 1, 1;
2, 2, 2, 1;
4, 6, 4, 3, 1;
8, 14, 12, 7, 4, 1;
18, 32, 33, 21, 11, 5, 1;
44, 74, 84, 64, 34, 16, 6, 1;
113, 180, 208, 181, 111, 52, 22, 7, 1;
296, 457, 520, 485, 344, 179, 76, 29, 8, 1;
782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1;
...
MAPLE
g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i)
, i=0..degree(h)), b(x, y, h)))(p+z^y) end:
b:= proc(x, y, p) option remember; `if`(y+2<=x, g(x-1, y+1, p), 0)
+`if`(y+1<=x, g(x-1, y, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
end:
T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(n, 0$2)):
seq(T(n), n=0..10);
CROSSREFS
Columns k=1-2 give: A088457, A051485.
Row sums give A372033 = A001006 + A333498.
Sequence in context: A247719 A131308 A261360 * A350587 A184242 A307739
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 15 2024
STATUS
approved