login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is odd.
4

%I #7 Apr 16 2024 13:55:22

%S 0,1,3,2,6,5,13,12,14,11,27,24,56,49,55,54,118,117,245,240,250,235,

%T 491,488,492,461,463,454,966,961,1985,1984,2002,1939,1951,1948,3996,

%U 3869,3903,3898,7994,7985,16177,16160,16166,15911,32295,32292,32300,32297,32363

%N a(n) = sum of 2^(k-1) such that floor(n/prime(k)) is odd.

%C The only powers of 2 in the sequence are likely 1 and 2.

%H Michael De Vlieger, <a href="/A371906/b371906.txt">Table of n, a(n) for n = 1..10000</a>

%H Michael De Vlieger, <a href="https://oeis.org/A372000/a372000.png">Plot powers 2^(i-1) that sum to a(n) at (x,y) = (n,i)</a> for n = 1..2048.

%e a(1) = 0 since n = 1 is the empty product.

%e a(2) = 1 since for n = prime(1) = 2, floor(2/2) = 1 is odd. Therefore a(2) = 2^(1-1) = 1.

%e a(3) = 3 since for n = 3 and prime(1) = 2, floor(3/2) = 1 is odd, and for prime(2) = 3, floor(3/3) = 1 is odd. Hence a(3) = 2^(1-1) + 2^(2-1) = 1 + 2 = 3.

%e a(4) = 2 since for n = 4 and prime(1) = 2, floor(4/2) = 2 is even, but for prime(2) = 3, floor(4/3) = 1 is odd. Therefore, a(n) = 2^(2-1) = 2.

%e a(5) = 6 since for n = 5, though floor(5/2) = 2 is even, floor(5/3) and floor(5/5) are both odd. Therefore, a(n) = 2^(2-1) + 2^(3-1) = 2 + 4 = 6, etc.

%e Table relating a(n) with b(n), diagramming powers of 2 with "x" that sum to a(n), or prime factors with "x" that produce b(n), where b(n) = A372000(n).

%e Power of 2

%e n a(n) 01234567 b(n)

%e ----------------------------

%e 1 0 . 1

%e 2 1 x 2

%e 3 3 xx 6

%e 4 2 .x 3

%e 5 6 .xx 15

%e 6 5 x.x 10

%e 7 13 x.xx 70

%e 8 12 ..xx 35

%e 9 14 .xxx 105

%e 10 11 xx.x 42

%e 11 27 xx.xx 462

%e 12 24 ...xx 77

%e 13 56 ...xxx 1001

%e 14 49 x...xx 286

%e 15 55 xxx.xx 4290

%e 16 54 .xx.xx 2145

%e 17 118 .xx.xxx 36465

%e 18 117 x.x.xxx 24310

%e 19 245 x.x.xxxx 461890

%e 20 240 ....xxxx 46189

%e ----------------------------

%e 1111

%e 23571379

%e Prime factor

%t Table[Total[2^(-1 + Select[Range@ PrimePi[n], OddQ@ Quotient[n, Prime[#]] &])], {n, 50}]

%o (PARI) a(n) = sum(k=1, primepi(n), if (n\prime(k) % 2, 2^(k-1))); \\ _Michel Marcus_, Apr 16 2024

%Y Cf. A008336, A260850, A372000.

%K nonn,easy

%O 1,3

%A _Michael De Vlieger_, Apr 15 2024