login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n,k)^7 * (1 - 7*k*(H(k) - H(n-k))), where H(n) is the n-th harmonic number.
1

%I #26 Apr 14 2024 13:46:34

%S 1,-5,109,-3317,121501,-4954505,216867925,-9981053045,476860000285,

%T -23451310381505,1180189308268609,-60519806861966105,

%U 3152285573768063461,-166371462775232899553,8880340127444426907109,-478649327347386225075317

%N a(n) = Sum_{k=0..n} binomial(n,k)^7 * (1 - 7*k*(H(k) - H(n-k))), where H(n) is the n-th harmonic number.

%H Seiichi Manyama, <a href="/A371882/b371882.txt">Table of n, a(n) for n = 0..562</a>

%H Robert Osburn, Armin Straub, and Wadim Zudilin, <a href="https://arxiv.org/abs/1701.04098">A modular supercongruence for 6F5: an Apéry-like story</a>, arXiv:1701.04098 [math.NT], 2017.

%H P. Paule and C. Schneider, <a href="https://doi.org/10.1016/S0196-8858(03)00016-2">Computer proofs of a new family of harmonic number identities</a>, Adv. in Appl. Math. 31 (2003), no. 2, 359-378.

%o (PARI) h(n) = sum(k=1, n, 1/k);

%o a(n, l=7) = sum(k=0, n, binomial(n, k)^l*(1-l*k*(h(k)-h(n-k))));

%Y Cf. A000984, A005258, A183204.

%Y Cf. A001008.

%K sign

%O 0,2

%A _Seiichi Manyama_, Apr 14 2024