Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #81 May 06 2024 18:58:22
%S 1,2,4,8,16,23,46,29,58,71,34,68,37,47,49,89,79,59,19,38,67,35,7,14,
%T 28,56,13,26,25,5,1,2,4,8,16,23,46,29,58,17,34,68,37,47,49,89,79,59,
%U 19,38,67,35,7,14,28,56,13,26,25,5,1,2,4,8,16,23,46,29,58,17
%N Smallest number reachable starting from 1 and taking n steps either doubling or doubling+reversing.
%C At each step you are allowed to either double x -> 2*x or double and reverse x -> R(2*x), where R(x) = A004086(x) is decimal digit reversal.
%C From _Michael S. Branicky_, Apr 14 2024: (Start)
%C Since a(30) = 1 = a(0), a(n) <= a(n-30) for n >= 30. a(39) <= 17 < a(9) = 71 is the first term that strictly lowers the bound. Is it eventually periodic?
%C Under the map, a term k has preimage k/2 if k is even plus terms of the form R(k)*10^i/2 for i > 1 and for i=0 if R(k) is even. (End)
%C The condition above implies a(i+30k) is nonincreasing for k >= 0 for all i in 0..29, hence it is periodic (with period being a factor of 30). When does the periodic part of the sequence begin? - _Bryle Morga_, Apr 15 2024
%C From _David A. Corneth_, Apr 15 2024: (Start)
%C a(n) == 2^n (mod 9).
%C Because of this, all values 1 <= a(n) <= 9 have a(n + 30*k) = a(n). That is a(30*k) = 1, a(30*k + 1) = 2, a(30*k + 2) = 4, a(30*k + 3) = 8, a(30*k + 22) = 7, a(30*k + 29) = 5, for k >= 0. (End)
%C Ultimately periodic sequence of period 30 with a(k+30)=a(k) for k != 9. - _David Wilson_, Apr 19 2024
%H David A. Corneth, <a href="/A371880/a371880.gp.txt">PARI program</a>.
%H Bryle Morga et al., <a href="https://math.stackexchange.com/questions/4899315/optimal-strategy-in-a-game-where-doubling-and-doublingreversing-are-the-allowed/4901445#4901445">Optimal strategy in a game where Doubling and Doubling+Reversing are the allowed moves</a>.
%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
%F a(n) = f(1, n) where f(k, 0) = k and f(k, n) = min(f(2*k, n-1), f(R(2*k), n-1)).
%F a(30k) = 1 for k >= 0. - _Michael S. Branicky_, Apr 14 2024
%F a(9) = 71. For k != 9, a(k) is the minimum of the positive residues mod 99 of 2^k and 10*2^k. - _David Wilson_, Apr 19 2024
%e a(20) = 67 and here is the 20-move combination that reaches 67: 1, 2, 4, 8, 61, 221, 244, 884, 8671, 17342, 48643, 97286, 275491, 289055, 11875, 23750, 47500, 95000, 190000, 380000, 67.
%e a(21) = 35 and here is the 21-move combination that reaches 35: 1, 2, 4, 8, 61, 221, 244, 884, 8671, 17342, 48643, 97286, 275491, 289055, 11875, 23750, 47500, 95000, 91, 281, 265, 35.
%e a(30) = 1 using the path: 1, 2, 4, 8, 61, 122, 442, 488, 976, 2591, 2815, 365, 37, 47, 49, 98, 196, 392, 487, 479, 859, 1718, 3436, 2786, 2755, 155, 13, 26, 25, 5, 1. - _Michael S. Branicky_, Apr 14 2024
%o (Python)
%o def f(k, d):
%o if d == 0:
%o return k
%o else:
%o return min(f(2*k, d-1), f(int(str(2*k)[::-1]), d - 1))
%o def a(n):
%o return f(1, n)
%o for n in range(25):
%o print(a(n))
%o (Python)
%o from itertools import islice
%o def reverse(n): return int(str(n)[::-1])
%o def agen(): # generator of terms
%o reach = {1}
%o while True:
%o yield min(reach)
%o newreach = set()
%o for q in reach: newreach.update([2*q, reverse(2*q)])
%o reach = newreach
%o print(list(islice(agen(), 28))) # _Michael S. Branicky_, Apr 14 2024
%o (PARI) \\ See PARI link
%Y Cf. A000079, A004086, A004094, A036447, A371966.
%K nonn,base,easy
%O 0,2
%A _Bryle Morga_, Apr 14 2024
%E a(27)-a(34) from _Michael S. Branicky_, Apr 14 2024
%E a(35) and beyond from _David Wilson_, Apr 19 2024