login
The number of digits in max(a,b,c), where a, b, and c are the smallest positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = A283564(n).
0

%I #8 May 04 2024 15:01:54

%S 81,134,190,2707,1876,414,10323,33644,81853,14836,1584369,886344,

%T 198771,418086,244860,9188,215532,23662,85465,252817,625533,935970,

%U 112519,196670,8572242,3607937,26942,259164,12046628,15097279,1265063,398605460,2828781,20770896,5442988,11323026,726373,71225279

%N The number of digits in max(a,b,c), where a, b, and c are the smallest positive integer solutions to a/(b+c) + b/(a+c) + c/(a+b) = A283564(n).

%H Googology Wiki, <a href="https://googology.fandom.com/wiki/Bremner-Macleod_numbers">Bremner-Macleod numbers</a>.

%e For n=1, a/(b+c) + b/(a+c) + c/(a+b) = 4, and the value of a, b, and c are 154476802108746166441951315019919837485664325669565431700026634898253202035277999, 36875131794129999827197811565225474825492979968971970996283137471637224634055579, and 4373612677928697257861252602371390152816537558161613618621437993378423467772036, and the maximum value has 81 digits.

%K nonn,base

%O 1,1

%A _Ryan Tang_, Apr 09 2024