Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 08 2024 18:49:56
%S 0,1,3,9,31,43,217,3913,9133,73067,1972819,6576067,24112247,372017527,
%T 1612075951,157983443203,7109254944151,37916026368811,644572448269793,
%U 34806912206568841,2422459091299663,7775794614048301,277759159408419360043,2036900502328408640323,46848711553553398727437
%N a(n) = numerator(Sum_{k=1..n} k^2/k!).
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IncompleteGammaFunction.html">Incomplete Gamma Function</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function">Incomplete gamma function</a>.
%F a(n) = numerator((2*(e*Gamma(n+1, 1) - 1) - n)/n!).
%F a(n) = numerator(A030297(n)/n!).
%F Limit_{n->oo} a(n)/A371832(n) = 2*e = A019762.
%t a[n_]:=Numerator[(2(E*Gamma[n+1,1]-1)-n)/n!]; Array[a,25,0]
%o (PARI) a(n) = numerator(sum(k=1, n, k^2/k!)); \\ _Michel Marcus_, Apr 07 2024
%Y Cf. A019762, A030297, A371832.
%Y Cf. A014973, A092043.
%K nonn,frac
%O 0,3
%A _Stefano Spezia_, Apr 07 2024