login
A371807
Number of nonoverlapping 666 substrings contained in the decimal expansion of the n-th apocalyptic number.
3
1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
An apocalyptic number is a positive power of 2 containing 666 in its decimal expansion.
See A371809 for a variant where overlapping substrings are counted as distinct.
LINKS
Brady Haran and Tony Padilla, Apocalyptic Numbers, YouTube Numberphile video, 2024.
Eric Weisstein's World of Mathematics, Apocalyptic Number.
FORMULA
a(n) <= A371809(n).
EXAMPLE
a(4) = 2 because the 4th apocalyptic number (2^220) contains two nonoverlapping 666 substrings in its decimal expansion:
2^220 = 168499(666)66969149871(666)88442938726917102321526408785780068975640576.
MATHEMATICA
Select[StringCount[IntegerString[2^Range[1000]], "666"], # > 0 &]
PROG
(Python)
from itertools import islice
def agen(): # generator of terms
pow2 = 1
while True:
s = str(pow2)
if (c := s.count("666")) > 0: yield c
pow2 <<= 1
print(list(islice(agen(), 88))) # Michael S. Branicky, Apr 07 2024
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Paolo Xausa, Apr 06 2024
STATUS
approved