Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 30 2024 15:56:41
%S 2,144,8,610,5358359254990966640871840,
%T 68330027629092351019822533679447,
%U 15156039800290547036315704478931467953361427680642,23770696554372451866815101694984845480039225387896643963981,119447720249892581203851665820676436622934188700177088360
%N Smallest Fibonacci number > 1 such that some permutation of its digits is a perfect n-th power.
%C Subsequence of A370071 after reordering (as the sequence is not monotonic; e.g., a(2) > a(3) and a(8) > a(9)). Leading 0 digits are allowed in the perfect power. For example, a(4) = 610 since 016 = 2^4. (If leading 0 digits were not allowed, a(4) would be 160500643816367088.)
%H Chai Wah Wu, <a href="/A371588/b371588.txt">Table of n, a(n) for n = 1..16</a>
%e a(1) = 2 since 2 = 2^1.
%e a(2) = 144 since 144 = 12^2.
%e a(3) = 8 since 8 = 2^3.
%e a(4) = 610 since 016 = 2^4.
%e a(5) = 5358359254990966640871840 since 0735948608251696955804943 = 59343^5
%e a(6) = 68330027629092351019822533679447 since 00059398947526192142327360782336 = 62464^6.
%o (Python)
%o from itertools import count
%o from sympy import integer_nthroot
%o def A371588(n):
%o a, b = 1, 2
%o while True:
%o s = sorted(str(b))
%o l = len(s)
%o m = int(''.join(s[::-1]))
%o u = int(''.join(s))
%o for i in count(max(2,integer_nthroot(u,n)[0])):
%o if (k:=i**n) > m:
%o break
%o t = sorted(str(k))
%o if ['0']*(l-len(t))+t == s:
%o return b
%o break
%o a, b = b, a+b
%Y Cf. A000045, A227875, A001597, A118715, A370071.
%K nonn,base,more
%O 1,1
%A _Chai Wah Wu_, Mar 28 2024