login
Expansion of e.g.f. Product_{k>=1} 1 / (1 - 2*x^k/k).
1

%I #8 Mar 30 2024 02:33:24

%S 1,2,10,64,548,5608,68936,973600,15700352,283559424,5685644928,

%T 125227712256,3007981305600,78237291643392,2191215982262784,

%U 65744691667064832,2103999919044163584,71538799576401408000,2575460412946013810688,97868678834373255069696,3914776163575281528889344

%N Expansion of e.g.f. Product_{k>=1} 1 / (1 - 2*x^k/k).

%F a(n) ~ c * 2^n * n!, where c = Product_{k>=2} 1/(1 - 2^(1-k)/k) = 1.5345676172355916355224667976662106649465582052467986508967405417359... - _Vaclav Kotesovec_, Mar 28 2024

%t nmax = 20; CoefficientList[Series[Product[1/(1 - 2 x^k/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%Y Cf. A007841, A371546, A371548.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Mar 27 2024