login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of A371409: sums of the positions of right parentheses in the properly nested string of parentheses encoded by A063171(n).
2

%I #12 Mar 27 2024 16:32:13

%S 2,6,7,12,13,13,14,15,20,21,21,22,23,21,22,22,23,24,23,24,25,26,30,31,

%T 31,32,33,31,32,32,33,34,33,34,35,36,31,32,32,33,34,32,33,33,34,35,34,

%U 35,36,37,33,34,34,35,36,35,36,37,38,36,37,38,39,40,42,43,43,44,45,43

%N Row sums of A371409: sums of the positions of right parentheses in the properly nested string of parentheses encoded by A063171(n).

%C See A370220 and A371409 for more information.

%D Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444.

%H Paolo Xausa, <a href="/A371410/b371410.txt">Table of n, a(n) for n = 1..10000</a>

%t zlist[m_] := With[{r = 2*Range[2, m]}, Reverse[Map[Join[{1}, #] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] > 0 &]]]];

%t Table[Delete[Map[Total[Complement[Range[2*m], #]] &, zlist[m]], 0], {m, 5}] (* _Paolo Xausa_, Mar 25 2024 *)

%t (* 2nd program: uses Algorithm Z from Knuth's TAOCP section 7.2.1.6, exercise 2 *)

%t zlist[m_] := Block[{z = 2*Range[m] - 1, j},

%t Reap[

%t While[True,

%t Sow[z];

%t If[z[[m-1]] < z[[m]] - 1,

%t z[[m]]--,

%t j = m - 1; z[[m]] = 2*m - 1;

%t While[j > 1 && z[[j-1]] == z[[j]] - 1, z[[j]] = 2*j - 1; j--];

%t If[j == 1,Break[]];

%t z[[j]]--]

%t ]][[2]][[1]]];

%t Join[{2}, Table[Delete[Map[Total[Complement[Range[2*m], #]] &, zlist[m]], 0], {m, 2, 5}]] (* _Paolo Xausa_, Mar 25 2024 *)

%Y Cf. A063171, A370220, A370290, A371409.

%K nonn

%O 1,1

%A _Paolo Xausa_, Mar 22 2024