login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximum number of vertices of a chordal ring graph with diameter n.
3

%I #36 Sep 30 2024 09:14:49

%S 6,14,20,38,48,74,88,122,140,182,204,254,280,338,368,434,468,542,580,

%T 662,704,794,840,938,988,1094,1148,1262,1320,1442,1504,1634,1700,1838,

%U 1908,2054,2128,2282,2360,2522,2604,2774,2860,3038,3120,3314,3408,3602,3700,3902,4004,4214,4320,4538,4648

%N Maximum number of vertices of a chordal ring graph with diameter n.

%C Given integers N (even) and c (odd) the chordal ring graph CR(N,c) is a bipartite graph with vertex set Z_N, and edges {i,i+1}, {i,i-1}, {i,i+c} if i is odd, and {i,i-c} if i is even.

%C If the conjecture below holds, then a(n) = 2*A309805(n) for n >= 3.

%D P. Morillo, F. Comellas, and M. A. Fiol, The optimization of chordal ring networks, Communication Technology, Eds. Q. Yasheng and W Xiuying, World Scientific,1987, pages 295--299.

%H B. W. Arden and H. Lee, <a href="https://doi-org.recursos.biblioteca.upc.edu/10.1109/TC.1981.1675777">Analysis of chordal ring networks</a>, IEEE Trans. Comput. C-30 (1981), 291-295.

%H M. A. Reyes, C. Dalfó, and M. A. Fiol, <a href="https://doi.org/10.48550/arXiv.2409.00520">Structural and Spectral Properties of Chordal Ring, Multi-ring and Mixed Graphs</a>, arXiv:2409.00520 [math.CO2024], 2024 [See Table 6, p. 21]. Also in <a href="https://doi.org/10.3390/sym16091135">Symmetry</a> 16 (2024), no. 9, 1135.

%H J. L. A. Yebra, M. A. Fiol, P. Morillo, and I. Alegre, <a href="https://upcommons.upc.edu/handle/2117/12662">The diameter of undirected graphs associated to plane tessellations</a>, Ars Combin. 20-B (1985), 159-171.

%F a(n) = (3*n^2+1)/2 if n is odd.

%F Conjecture: a(n) = (3/2)*n^2 - n if n is even and n > 2.

%e For diameter n=3 the maximum number of vertices a(3)=14 is attained by the Heawood graph.

%Y Cf. A309805.

%K nonn

%O 2,1

%A _Miquel A. Fiol_, Mar 21 2024