login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371378
Prime numbers wherein digit values decrease, increase, and finally decrease.
1
1021, 1031, 1051, 1061, 1063, 1087, 1091, 1093, 1097, 2053, 2063, 2081, 2083, 2087, 2131, 2141, 2143, 2153, 2161, 3041, 3061, 3083, 3121, 3163, 3181, 3187, 3191, 3251, 3253, 3271, 4021, 4051, 4073, 4091, 4093, 4153, 4231, 4241, 4243, 4253, 4261, 4271, 4273, 4283
OFFSET
1,1
COMMENTS
Terms must have at least 4 digits. The sequence is finite.
There are 3136837 terms, with the last being 98765432101234567987654321. - Michael S. Branicky, Mar 20 2024
MAPLE
q:= proc(n) local i, l, s;
l, s:= convert(n, base, 10), 1;
for i to nops(l)-1 while s<5 do s:=
`if`(l[i]=l[i+1], 5,
`if`(l[i]<l[i+1], [2$2, 4$2][s], [5, 3$2, 5][s]))
od; is(s=4)
end:
select(isprime and q, [$1..15000])[]; # Alois P. Heinz, Mar 21 2024
MATHEMATICA
Select[Prime[Range[600]], SplitBy[Sign[Differences[IntegerDigits[#]]], Sign][[;; , 1]] == {-1, 1, -1} &] (* Amiram Eldar, Mar 21 2024 *)
PROG
(Python)
from sympy import isprime
from itertools import combinations, islice
def agen(): # generator of terms
for d in range(4, 29):
print(d)
passed = set()
for d1 in range(2, min(d-2, 11)+1):
for c1 in combinations("9876543210", d1):
for d2 in range(1, min(d-d1-1, 10)+1):
digits2 = list(map(str, range(int(c1[-1])+1, 10)))
for c2 in combinations(digits2, d2):
digits3 = list(map(str, range(int(c2[-1])-1, -1, -1)))
for c3 in combinations(digits3, d - d1 - d2):
t = int("".join(c1 + c2 + c3))
if isprime(t):
passed.add(t)
yield from sorted(passed)
print(list(islice(agen(), 63))) # Michael S. Branicky, Mar 20 2024
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
James S. DeArmon, Mar 20 2024
EXTENSIONS
More terms from Michael S. Branicky, Mar 20 2024
STATUS
approved