login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371339
a(n) = Product_{k=1..n} A000178(k)^k.
0
1, 1, 4, 6912, 47552535724032, 2344457420244640062508151026483200000, 556518660278190472985800630083758030134707790620313895060688076800000000000000000
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Superfactorial.
FORMULA
a(n) = Product_{k=1..n} BarnesG(k+2)^k.
a(n) = A372140(n+2) / A055462(n)^2.
a(n) ~ (2*Pi)^(n*(n+1)*(n+2)/6) * n^(n^4/8 + 7*n^3/12 + 5*n^2/6 + 3*n/8 + 19/720) / (A^(n^2/2 + n/2 - 1/3) * exp(7*n^4/32 + 59*n^3/72 + 17*n^2/24 - n/24 + zeta(3)/(8*Pi^2) + zeta'(-3)/6 - 37/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.
MATHEMATICA
Table[Product[BarnesG[k+2]^k, {k, 1, n}], {n, 0, 8}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 20 2024
STATUS
approved