login
Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).
14

%I #13 Mar 23 2024 22:13:01

%S 3,5,11,17,26,31,35,38,39,41,49,57,58,59,65,67,69,77,83,86,87,94,109,

%T 119,127,129,133,146,148,157,158,179,191,202,206,211,217,235,237,241,

%U 244,253,274,277,278,283,284,287,291,298,303,319,326,331,333,334,353

%N Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).

%C A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

%F A000005(a(n)) = A370820(a(n)).

%e The terms together with their prime indices begin:

%e 3: {2} 67: {19} 158: {1,22}

%e 5: {3} 69: {2,9} 179: {41}

%e 11: {5} 77: {4,5} 191: {43}

%e 17: {7} 83: {23} 202: {1,26}

%e 26: {1,6} 86: {1,14} 206: {1,27}

%e 31: {11} 87: {2,10} 211: {47}

%e 35: {3,4} 94: {1,15} 217: {4,11}

%e 38: {1,8} 109: {29} 235: {3,15}

%e 39: {2,6} 119: {4,7} 237: {2,22}

%e 41: {13} 127: {31} 241: {53}

%e 49: {4,4} 129: {2,14} 244: {1,1,18}

%e 57: {2,8} 133: {4,8} 253: {5,9}

%e 58: {1,10} 146: {1,21} 274: {1,33}

%e 59: {17} 148: {1,1,12} 277: {59}

%e 65: {3,6} 157: {37} 278: {1,34}

%t Select[Range[100],Length[Divisors[#]] == Length[Union@@Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

%Y For prime factors instead of divisors on both sides we get A319899.

%Y For prime factors on LHS we get A370802, for distinct prime factors A371177.

%Y The RHS is A370820, for prime factors instead of divisors A303975.

%Y For (greater than) instead of (equal) we get A371166.

%Y For (less than) instead of (equal) we get A371167.

%Y Partitions of this type are counted by A371172.

%Y Other inequalities: A370348 (A371171), A371168 (A371173), A371169, A371170.

%Y A000005 counts divisors.

%Y A001221 counts distinct prime factors.

%Y A027746 lists prime factors, A112798 indices, length A001222.

%Y A239312 counts divisor-choosable partitions, ranks A368110.

%Y A355731 counts choices of a divisor of each prime index, firsts A355732.

%Y A370320 counts non-divisor-choosable partitions, ranks A355740.

%Y A370814 counts divisor-choosable factorizations, complement A370813.

%Y Cf. A000792, A003963, A355529, A355739, A355741, A368100, A370808, A371127.

%K nonn

%O 1,1

%A _Gus Wiseman_, Mar 14 2024