%I #10 Apr 13 2024 14:38:49
%S 1,1,1,1,8,8,4,4,32,288,144,144,12,12,6,90,1440,1440,80,80,4,84,42,42,
%T 1008,25200,12600,340200,12150,12150,405,405,12960,427680,213840,
%U 7484400,207900,207900,103950,4054050,162162000,162162000,3861000,3861000,87750,1950,975,975,46800,2293200,45864,2339064,44982
%N A008336(n) is divisible by the product of the primes p such that n/2 <= p < n; a(n) is the quotient.
%H N. J. A. Sloane, <a href="/A370971/b370971.txt">Table of n, a(n) for n = 1..2732</a>
%F a(n) = A008336(n)/A055773(n1).
%e For n= 7, A008336(7) = 20. The only prime with 3.5 <= p < 7 is 5, so a(7) = 20/5 = 4.
%e For n= 8, A008336(7) = 140. The only primes with 4 <= p < 8 are 5 and 7, so a(8) = 140/(5*7) = 4.
%Y Cf. A008336, A055773 (note that A055773 has offset 0).
%K nonn
%O 1,5
%A _N. J. A. Sloane_, Apr 13 2024
