login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = number of "weakly lonesum" 2 X 2 X n tensors.
3

%I #25 Aug 25 2024 16:19:11

%S 1,16,254,4006,62834,980926,15251714,236305246,3649992194,56225671966,

%T 864046126274,13249946549086,202798763405954,3098675363464606,

%U 47273845225223234,720219685203906526,10958863373616410114,166560903942055522846,2528904905860164038594

%N a(n) = number of "weakly lonesum" 2 X 2 X n tensors.

%H Don Knuth, <a href="http://cs.stanford.edu/~knuth/papers/poly-Bernoulli.pdf">Parades and poly-Bernoulli bijections</a>, Mar 31 2024. See (19.13).

%H Filip Stappers, <a href="https://archive.org/details/parades_problems">Problems concerning parades and poly-Bernoulli numbers</a>, 2024. See Problem 9.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (29,-210).

%F From _Filip Stappers_, Aug 25 2024: (Start)

%F a(n) = 2*15^n - 14^n.

%F G.f.: (1-13*z) / ((1-15*z)*(1-14*z)). (End)

%Y Cf. A370962, A370963, A370965.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Apr 04 2024

%E a(7) from _Michael S. Branicky_, Apr 07 2024

%E a(0) and more terms from _Filip Stappers_, Aug 25 2024