login
a(n) = number of acyclic orientations of the complete tripartite graph K_{2,2,n}.
4

%I #25 Apr 24 2024 15:50:21

%S 14,78,426,2286,12090,63198,327306,1682766,8601690,43768638,221910186,

%T 1121897646,5659111290,28494757278,143272715466,719565670926,

%U 3610655860890,18104646725118,90728875495146,454467461514606,2275631193410490,11391336159448158,57009415513961226,285258058278100686,1427134339747920090

%N a(n) = number of acyclic orientations of the complete tripartite graph K_{2,2,n}.

%H Alois P. Heinz, <a href="/A370960/b370960.txt">Table of n, a(n) for n = 0..1428</a> (terms n = 1..50 from Don Knuth)

%H Don Knuth, <a href="http://cs.stanford.edu/~knuth/papers/poly-Bernoulli.pdf">Parades and poly-Bernoulli bijections</a>, Mar 31 2024. See (19.2).

%Y Cf. A370961.

%Y Row n=2 of A372254.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Apr 04 2024

%E Further terms from _Don Knuth_, Apr 07 2024

%E a(0)=14 prepended by _Alois P. Heinz_, Apr 17 2024