Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 05 2024 11:52:05
%S 1,0,1,-1,0,-1,0,-3,-1,-2,-1,-3,-2,-3,-2,-7,-6,-8,-7,-9,-8,-9,-8,-11,
%T -9,-10,-7,-9,-8,-9,-8,-15,-14,-15,-14,-18,-17,-18,-17,-20,-19,-20,
%U -19,-21,-19,-20,-19,-24,-22,-24,-23,-25,-24,-27,-26,-29,-28,-29,-28
%N Partial alternating sums of the number of abelian groups sequence (A000688).
%H Amiram Eldar, <a href="/A370897/b370897.txt">Table of n, a(n) for n = 1..10000</a>
%H László Tóth, <a href="https://www.emis.de/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
%F a(n) = Sum_{k=1..n} (-1)^(k+1) * A000688(k).
%F a(n) = k_1 * A021002 * n + k_2 * A084892 * n^(1/2) + k_3 * A084893 * n^(1/3) + O(n^(1/4 + eps)), where eps > 0 is arbitrarily small, k_j = -1 + 2 * Product_{i>=1} (1 - 1/2^(i/j)), k_1 = 2*A048651 - 1 = -0.422423809826..., k_2 = -0.924973966404..., and k_3 = -0.991478298912... (Tóth, 2017).
%t f[n_] := Times @@ (PartitionsP[Last[#]] & /@ FactorInteger[n]); f[1] = 1; Accumulate[Array[(-1)^(#+1) * f[#] &, 100]]
%o (PARI) f(n) = vecprod(apply(numbpart, factor(n)[, 2]));
%o lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * f(k); print1(s, ", "))};
%Y Cf. A000688, A063966.
%Y Cf. A021002, A048651, A084892, A084893.
%Y Similar sequences: A068762, A068773, A307704, A357817, A362028.
%K sign,easy
%O 1,8
%A _Amiram Eldar_, Mar 05 2024