login
Numbers m such that c(0) >= c(1) > c(2), where c(k) = number of k's in the ternary representation of m.
3

%I #7 Mar 12 2024 22:35:46

%S 3,9,27,28,30,36,81,82,84,86,88,90,92,96,100,102,108,110,114,126,136,

%T 138,144,166,172,174,190,192,198,243,244,246,247,248,250,252,253,254,

%U 255,258,262,264,270,271,272,273,276,279,288,298,300,306,324,325,326

%N Numbers m such that c(0) >= c(1) > c(2), where c(k) = number of k's in the ternary representation of m.

%e The ternary representation of 84 is 10010, for which c(0)=3 >= c(1)=2 > c(2)=0.

%t Select[Range[1000], DigitCount[#, 3, 0] >= DigitCount[#, 3, 1] > DigitCount[#, 3, 2] &]

%Y Cf. A007089, A077267, A062756, A081603.

%Y Cf. A370870, A370872, A370873.

%K nonn,base

%O 1,1

%A _Clark Kimberling_, Mar 11 2024