login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370648
Number of ways to choose a subset s of [n] and then for each element in s choose a different prime factor.
1
1, 1, 2, 4, 6, 12, 22, 44, 56, 76, 130, 260, 376, 752, 1248, 1948, 2224, 4448, 5808, 11616, 16016, 24000, 38416, 76832, 94656, 114736, 181992, 204024, 274056, 548112, 743856, 1487712, 1593696, 2292992, 3590880, 4881120, 5630592, 11261184, 17559072, 24987360
OFFSET
0,3
LINKS
FORMULA
a(p) = 2 * a(p-1) for prime p.
MAPLE
b:= proc(n, s) option remember; uses numtheory; `if`(n=0, 1, b(n-1, s)+
add(b(n-1, select(x-> x<n, s union {j})), j=factorset(n) minus s))
end:
a:= n-> b(n, {}):
seq(a(n), n=0..42);
CROSSREFS
Sequence in context: A196700 A283834 A341582 * A326114 A135231 A326489
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 25 2024
STATUS
approved