%I #7 Mar 11 2024 18:06:09
%S 0,1,1,2,3,5,9,15,32,45,67,98,141,197,263,358,1201,1493,1920,2482,
%T 3123,3967,4884,6137,7584,9369
%N Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.
%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C Also choices of A029837(n) elements of {1..n} containing n such that it is possible to choose a different binary index of each.
%e The a(0) = 0 through a(7) = 15 subsets:
%e . {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,2,7}
%e {2,3} {1,3,4} {1,3,5} {1,3,6} {1,3,7}
%e {2,3,4} {2,3,5} {1,4,6} {1,4,7}
%e {2,4,5} {1,5,6} {1,5,7}
%e {3,4,5} {2,3,6} {1,6,7}
%e {2,5,6} {2,3,7}
%e {3,4,6} {2,4,7}
%e {3,5,6} {2,5,7}
%e {4,5,6} {2,6,7}
%e {3,4,7}
%e {3,5,7}
%e {3,6,7}
%e {4,5,7}
%e {4,6,7}
%e {5,6,7}
%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}]
%Y A version for set-systems is A368601.
%Y For prime indices we have A370590, without n A370585, see also A370591.
%Y This is the maximal case of A370636 requiring n, complement A370637.
%Y This is the maximal case of A370639, complement A370589.
%Y Without requiring n we have A370640.
%Y Dominated by A370819.
%Y A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
%Y A058891 counts set-systems, A003465 covering, A323818 connected.
%Y A070939 gives length of binary expansion.
%Y A096111 gives product of binary indices.
%Y A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
%Y A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
%Y Cf. A133686, A326031, A326702, A357812, A367905, A368100, A368109, A370586, A370638, A370642.
%K nonn,more
%O 0,4
%A _Gus Wiseman_, Mar 11 2024