login
Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.
0

%I #10 May 01 2024 08:59:23

%S 1,0,2,3,14,35,125,371,1238,3909,12847,41580,136577,447187,1473341,

%T 4855703,16053830,53138243,176233967,585202261,1945964079,6478043120,

%U 21588979876,72016891508,240452892569,803489258285,2686964354375,8991840800136,30110638705889

%N Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(n-k-1,n-2*k).

%F The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2) / (1-x) ).

%o (PARI) a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

%Y Cf. A046736, A213684.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Apr 30 2024