login
Number of permutations of [n] having no adjacent 2-cycles and no adjacent 3-cycles.
0

%I #9 Feb 22 2024 10:42:02

%S 1,1,1,3,17,95,594,4280,35018,320636,3249951,36140133,437572800,

%T 5731086422,80745062993,1217782176949,19576722067015,334183547442139,

%U 6037316140379389,115082343658784617,2308352556410956084,48602560660569621128,1071794851776260190000

%N Number of permutations of [n] having no adjacent 2-cycles and no adjacent 3-cycles.

%F G.f.: Sum_{k>=0} k! * x^k / (1+x^2+x^3)^(k+1).

%F a(n) = Sum_{i, j>=0 and 2*i+3*j<=n} (-1)^(i+j) * (n-i-2*j)!/(i!*j!).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k/(1+x^2+x^3)^(k+1)))

%Y Cf. A370569.

%K nonn

%O 0,4

%A _Seiichi Manyama_, Feb 22 2024