login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370483
a(n) = Product_{k=0..n} binomial(n^2 + k^2, k^2).
0
1, 2, 350, 347633000, 101143578356902991250, 422044560230008480282938965899488406272, 1208807563912714402070105775158111317516306396248661153276031151000
OFFSET
0,2
FORMULA
a(n) = Product_{k=0..n} binomial(n^2 + k^2, n^2).
a(n) = A371643(n) / ((n^2)!^(n+1) * A255322(n)).
a(n) ~ 2^(4*n^3/3 + n^2 + n/6 + 1/4) * exp((Pi-4)*n^3/3 + Pi*n/4) / (A255504 * n^(n + 1/2) * Pi^(n/2)).
MATHEMATICA
Table[Product[Binomial[n^2 + k^2, n^2], {k, 0, n}], {n, 0, 8}]
Table[Product[Binomial[n^2 + k^2, k^2], {k, 0, n}], {n, 0, 8}]
CROSSREFS
Sequence in context: A063831 A216356 A064023 * A179959 A024350 A012669
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 31 2024
STATUS
approved