login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. C(x,k) satisfying C(x,k) = cosh( x*cosh(k*x*C(x,k)) ), as a triangle read by rows.
7

%I #21 Feb 21 2024 08:25:37

%S 1,1,0,1,12,0,1,420,120,0,1,10248,36400,896,0,1,196920,4858560,

%T 2170560,5760,0,1,3247860,461126160,1127738304,102960000,33792,0,1,

%U 48361404,35248293080,340884800256,187282263168,4083183104,186368,0,1,669616080,2290777550880,76526954183680,153279541958400,25081621813248,141360128000,983040,0

%N Expansion of e.g.f. C(x,k) satisfying C(x,k) = cosh( x*cosh(k*x*C(x,k)) ), as a triangle read by rows.

%C The row sums equal A143601, the number of labeled odd degree trees with 2n+1 nodes.

%C Unsigned version of triangle A370330.

%C A row reversal of triangle A370432.

%H Paul D. Hanna, <a href="/A370430/b370430.txt">Table of n, a(n) for n = 0..1325</a>

%F E.g.f.: C(x,k) = Sum_{n>=0} Sum_{j=0..n} a(n,j) * x^(2*n)*k^(2*j)/(2*n)! along with the related functions C = C(x,k), S = S(x,k), D = D(x,k), and T = T(x,k) satisfy the following formulas.

%F Definition.

%F (1.a) (C + S) = exp(x*D).

%F (1.b) (D + k*T) = exp(k*x*C).

%F (2.a) C^2 - S^2 = 1.

%F (2.b) D^2 - k^2*T^2 = 1.

%F Hyperbolic functions.

%F (3.a) C = cosh(x*D).

%F (3.b) S = sinh(x*D).

%F (3.c) D = cosh(k*x*C).

%F (3.d) T = (1/k) * sinh(k*x*C).

%F (4.a) C = cosh( x*cosh(k*x*C) ).

%F (4.b) S = sinh( x*cosh(k*x*sqrt(1 + S^2)) ).

%F (4.c) D = cosh( k*x*cosh(x*D) ).

%F (4.d) T = (1/k) * sinh( k*x*cosh(x*sqrt(1 + k^2*T^2)) ).

%F (5.a) (C*D + k*S*T) = cosh(x*D + k*x*C).

%F (5.b) (S*D + k*C*T) = sinh(x*D + k*x*C).

%F Transformations.

%F (6.a) C(x, 1/k) = D(x/k, k).

%F (6.b) D(x, 1/k) = C(x/k, k).

%F (6.c) S(x, 1/k) = k * T(x/k, k).

%F (6.d) T(x, 1/k) = k * S(x/k, k).

%F (6.e) D(x, k) = C(k*x, 1/k).

%F (6.f) C(x, k) = D(k*x, 1/k).

%F (6.g) T(x, k) = (1/k) * S(k*x, 1/k).

%F (6.h) S(x, k) = (1/k) * T(k*x, 1/k).

%F Integrals.

%F (7.a) C = 1 + Integral S*D + x*S*D' dx.

%F (7.b) S = Integral C*D + x*C*D' dx.

%F (7.c) D = 1 + k^2 * Integral T*C + x*T*C' dx.

%F (7.d) T = Integral D*C + x*D*C' dx.

%F Derivatives (d/dx).

%F (8.a) C*C' = S*S'.

%F (8.b) D*D' = k^2*T*T'.

%F (9.a) C' = S * (D + x*D').

%F (9.b) S' = C * (D + x*D').

%F (9.c) D' = k^2 * T * (C + x*C').

%F (9.d) T' = D * (C + x*C').

%F (10.a) C' = S * (D + k^2*x*T*C) / (1 - k^2*x^2*S*T).

%F (10.b) S' = C * (D + k^2*x*T*C) / (1 - k^2*x^2*S*T).

%F (10.c) D' = k^2 * T * (C + x*S*D) / (1 - k^2*x^2*S*T).

%F (10.d) T' = D * (C + x*S*D) / (1 - k^2*x^2*S*T).

%F (11.a) (C + x*C') = (C + x*S*D) / (1 - k^2*x^2*S*T).

%F (11.b) (D + x*D') = (D + k^2*x*T*C) / (1 - k^2*x^2*S*T).

%F Logarithms.

%F (12.a) D = log(C + sqrt(C^2 - 1)) / x.

%F (12.b) C = log(D + sqrt(D^2 - 1)) / (k*x).

%F (12.c) T = sqrt(log(S + sqrt(1 + S^2))^2 - x^2) / (k*x).

%F (12.d) S = sqrt(log(k*T + sqrt(1 + k^2*T^2))^2 - k^2*x^2) / (k*x).

%e E.g.f.: C(x,k) = 1 + (1)*x^2/2! + (1 + 12*k^2)*x^4/4! + (1 + 420*k^2 + 120*k^4)*x^6/6! + (1 + 10248*k^2 + 36400*k^4 + 896*k^6)*x^8/8! + (1 + 196920*k^2 + 4858560*k^4 + 2170560*k^6 + 5760*k^8)*x^10/10! + (1 + 3247860*k^2 + 461126160*k^4 + 1127738304*k^6 + 102960000*k^8 + 33792*k^10)*x^12/12! + (1 + 48361404*k^2 + 35248293080*k^4 + 340884800256*k^6 + 187282263168*k^8 + 4083183104*k^10 + 186368*k^12)*x^14/14! + ...

%e where C(x,k) = cosh( x*cosh(k*x*C(x,k)) ).

%e This triangle of coefficients a(n,j) of x^(2*n)*k^(2*j)/(2*n)! in C(x,k) begins

%e 1;

%e 1, 0;

%e 1, 12, 0;

%e 1, 420, 120, 0;

%e 1, 10248, 36400, 896, 0;

%e 1, 196920, 4858560, 2170560, 5760, 0;

%e 1, 3247860, 461126160, 1127738304, 102960000, 33792, 0;

%e 1, 48361404, 35248293080, 340884800256, 187282263168, 4083183104, 186368, 0;

%e 1, 669616080, 2290777550880, 76526954183680, 153279541958400, 25081621813248, 141360128000, 983040, 0;

%e 1, 8781531696, 131249560881600, 14052066349007232, 83205186217021440, 51607880705931264, 2855197025501184, 4416170065920, 5013504, 0; ...

%o (PARI) {a(n, j) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n)));

%o for(i=1, 2*n,

%o C = cosh( x*cosh(k*x*C +Ox) );

%o S = sinh( x*cosh(k*x*sqrt(1 + S^2 +Ox)) );

%o D = cosh( k*x*cosh(x*D +Ox));

%o T = (1/k)*sinh( k*x*cosh(x*sqrt(1 + k^2*T^2 +Ox))););

%o (2*n)! * polcoeff(polcoeff(C, 2*n, x), 2*j, k)}

%o for(n=0, 10, for(j=0, n, print1( a(n, j), ", ")); print(""))

%Y Cf. A370431 (S), A370432 (D), A370433 (T), A143601 (row sums).

%Y Cf. A370330.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Feb 19 2024