login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370425
Integers of the form (2^x + 1) / (2^y + 1).
3
1, 3, 11, 13, 43, 57, 171, 205, 241, 683, 993, 2731, 3277, 3641, 4033, 10923, 16257, 43691, 52429, 61681, 65281, 174763, 233017, 261633, 699051, 838861, 1016801, 1047553, 2796203, 4192257, 11184811, 13421773, 14913081, 15790321, 16519105, 16773121, 44739243, 67100673, 178956971
OFFSET
1,2
COMMENTS
The integers k for which the equation 2^x - k = k*2^y - 1 has a solution x,y > 0.
If x,y > 0, then 2^y + 1 divides 2^x + 1 if and only if x/y is odd.
The prime numbers of this sequence are A281728.
LINKS
EXAMPLE
(2^5+1)/(2^1+1) = 11 = 1011,
(2^10+1)/(2^2+1) = 205 = 11001101,
(2^15+1)/(2^3+1) = 3641 = 111000111001,
(2^20+1)/(2^4+1) = 61681 = 1111000011110001,
(2^25+1)/(2^5+1) = 1016801 = 11111000001111100001,
(2^30+1)/(2^6+1) = 16519105 = 111111000000111111000001,
(2^35+1)/(2^7+1) = 266354561 = 1111111000000011111110000001, ...
Note that all the above examples are A020518(n) for n > 0.
PROG
(PARI) get_xy(m) = my(x, y, t); y=valuation(m-1, 2); t=m*(2^y+1)-1; if(t!=2^(x=valuation(t, 2)), [], [x, y]); \\ Max Alekseyev, Feb 18 2024
CROSSREFS
Cf. A064896 (integers of the form (2^x-1)/(2^y-1)), A079665, A281728.
Sequence in context: A181086 A274343 A113049 * A225097 A079665 A281728
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Feb 16 2024
EXTENSIONS
More terms from Michel Marcus, Feb 17 2024
STATUS
approved