The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A370425 Integers of the form (2^x + 1) / (2^y + 1). 3
 1, 3, 11, 13, 43, 57, 171, 205, 241, 683, 993, 2731, 3277, 3641, 4033, 10923, 16257, 43691, 52429, 61681, 65281, 174763, 233017, 261633, 699051, 838861, 1016801, 1047553, 2796203, 4192257, 11184811, 13421773, 14913081, 15790321, 16519105, 16773121, 44739243, 67100673, 178956971 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The integers k for which the equation 2^x - k = k*2^y - 1 has a solution x,y > 0. If x,y > 0, then 2^y + 1 divides 2^x + 1 if and only if x/y is odd. The prime numbers of this sequence are A281728. LINKS Max Alekseyev, Table of n, a(n) for n = 1..1000 EXAMPLE (2^5+1)/(2^1+1) = 11 = 1011, (2^10+1)/(2^2+1) = 205 = 11001101, (2^15+1)/(2^3+1) = 3641 = 111000111001, (2^20+1)/(2^4+1) = 61681 = 1111000011110001, (2^25+1)/(2^5+1) = 1016801 = 11111000001111100001, (2^30+1)/(2^6+1) = 16519105 = 111111000000111111000001, (2^35+1)/(2^7+1) = 266354561 = 1111111000000011111110000001, ... Note that all the above examples are A020518(n) for n > 0. PROG (PARI) get_xy(m) = my(x, y, t); y=valuation(m-1, 2); t=m*(2^y+1)-1; if(t!=2^(x=valuation(t, 2)), [], [x, y]); \\ Max Alekseyev, Feb 18 2024 CROSSREFS Cf. A064896 (integers of the form (2^x-1)/(2^y-1)), A079665, A281728. Sequence in context: A181086 A274343 A113049 * A225097 A079665 A281728 Adjacent sequences: A370422 A370423 A370424 * A370426 A370427 A370428 KEYWORD nonn AUTHOR Thomas Ordowski, Feb 16 2024 EXTENSIONS More terms from Michel Marcus, Feb 17 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 00:14 EDT 2024. Contains 372720 sequences. (Running on oeis4.)