login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers k such that the maximum number of subgroups of a group of order k is exactly k.
0

%I #21 Sep 15 2024 20:22:57

%S 1,2,6,28,260

%N Integers k such that the maximum number of subgroups of a group of order k is exactly k.

%C Intersection of A368538 and A370422. Difference of A370422 and A370421.

%C a(6) > 2000 if it exists.

%o (Magma) // to get the terms up to 1023.

%o i:=1;

%o while i lt 1024 do // terms up to 1023

%o allGroupsHaveLessThanOrEqualNumberOfSubgroups:=1;

%o someGroupWithExactNumberOfSubgroups:=0;

%o j:=1;

%o while j le NumberOfSmallGroups(i) do //iterate through all the groups of order i

%o G:=SmallGroup(i, j);

%o if #AllSubgroups(G) eq i then

%o someGroupWithExactNumberOfSubgroups:=1;

%o end if;

%o if #AllSubgroups(G) gt i then //some group has > i subgroups

%o allGroupsHaveLessThanOrEqualNumberOfSubgroups:=0;

%o break;

%o end if;

%o j:=j+1;

%o end while;

%o if allGroupsHaveLessThanOrEqualNumberOfSubgroups eq 1 and someGroupWithExactNumberOfSubgroups eq 1 then

%o i;

%o end if;

%o i:=i+1;

%o end while;

%Y Cf. A368538, A370421, A370422.

%K nonn,more

%O 1,2

%A _Robin Jones_, Feb 18 2024