login
A370368
Total sum over all j in [n] of the number of partitions of [j*(n-j)] into (n-j) sets of size j having no set of consecutive numbers whose maximum (if j>0) is a multiple of j.
4
1, 1, 1, 1, 3, 18, 347, 20679, 4064088, 3206794270, 9817417580226, 147957639234186793, 9515125170594095021483, 3369265619091187775505912588, 5792039079391869138256364232105952, 55416702792637442337898498177490975722265
OFFSET
0,5
LINKS
FORMULA
a(n) = Sum_{j=0..n} A370366(j,n-j).
a(n) = A370407(n) - A370365(n).
MAPLE
b:= proc(n, k) `if`(k=0, `if`(n=0, 1, 0), add(
(-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n))
end:
a:= n-> add(b(j, n-j), j=0..n):
seq(a(n), n=0..15);
CROSSREFS
Antidiagonal sums of A370366.
Sequence in context: A128775 A102100 A083000 * A303074 A181040 A118704
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 16 2024
STATUS
approved